

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2012-236025

(P2012-236025A)

(43) 公開日 平成24年12月6日(2012.12.6)

(51) Int.Cl.

A61B 1/00
A61B 17/28
(2006.01)
(2006.01)

F 1

A 61 B 1/00
A 61 B 17/28
3 0 0 B
3 1 0

テーマコード(参考)

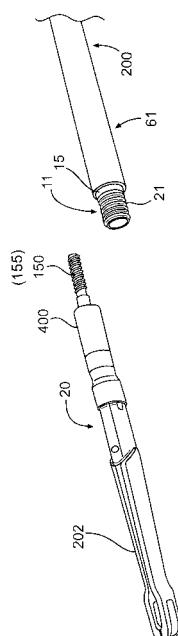
4 C 1 6 0
4 C 1 6 1

審査請求 有 請求項の数 34 O L 外国語出願 (全 49 頁)

(21) 出願番号 特願2012-109003 (P2012-109003)
 (22) 出願日 平成24年5月11日 (2012.5.11)
 (31) 優先権主張番号 61/485,263
 (32) 優先日 平成23年5月12日 (2011.5.12)
 (33) 優先権主張国 米国(US)
 (31) 優先権主張番号 13/466,425
 (32) 優先日 平成24年5月8日 (2012.5.8)
 (33) 優先権主張国 米国(US)

(71) 出願人 510158325
 マイクロライン サージカル インコーポ
 レーテッド
 M I C R O L I N E S U R G I C A L,
 I N C.
 アメリカ合衆国 マサチューセッツ州
 0 1 9 1 5 ベヴァリー スイート 1 6
 6 T カミングセンター 8 0 0
 8 0 0 C u m m i n g C e n t e r,
 S u i t e 1 6 6 T, B e v e r l
 y, M a s s a c h u s e t t s 0 1
 9 1 5 U n i t e d S t a t e s o
 f A m e r i c a
 (74) 代理人 100083286
 弁理士 三浦 邦夫

最終頁に続く


(54) 【発明の名称】腹腔鏡外科的システムのためのコネクタ

(57) 【要約】

【課題】チューブエンドと器具チップを接続する腹腔鏡装置に用いる少なくとも2つの材料から形成されたコネクタを提供する。

【解決手段】器具チップを腹腔鏡のチューブエンドに接続するためのコネクタであって、コネクタのボディを形成するベースを有し、このベースは、内部に器具チップアクチュエータを収容する空間を有していて、ベースの近位端の内面には、コネクタをチューブエンドに結合すると変形するシールが永久結合されている。

【選択図】図1

【特許請求の範囲】**【請求項 1】**

器具チップを腹腔鏡のチューブエンドに接続するコネクタであって、
該コネクタは、
該コネクタのボディを形成する、内部に器具チップアクチュエータを収容するルーメン
を有するベース；及び
上記ベースの近位端の内面に永久接着され、上記コネクタを上記チューブエンドに接続
したとき変形するように設けられたシール；
を有することを特徴とする腹腔鏡コネクタ。

【請求項 2】

請求項 1 記載の腹腔鏡コネクタにおいて、上記器具チップアクチュエータは、上記コネクタ
を上記チューブエンドに接続するとき、チューブエンドの外囲から電気的に絶縁され、
流体的にシールされる腹腔鏡コネクタ。

【請求項 3】

請求項 1 記載の腹腔鏡コネクタにおいて、上記コネクタは上記器具チップと一体に形成さ
れている腹腔鏡コネクタ。

【請求項 4】

請求項 1 記載の腹腔鏡コネクタにおいて、上記ベースとシールの少なくとも一方には係合
領域が存在し、

この係合領域は、ねじ、プレス嵌め、バヨネット、ボールディテント機構、バレルピン
、及びドッグ・トゥース・ラチェット機構の何れかからなり、かつ

この係合領域は、上記チューブエンドの対応する係合領域に係合するように設けられて
いる腹腔鏡コネクタ。

【請求項 5】

請求項 1 記載の腹腔鏡コネクタにおいて、上記シールは、上記コネクタを上記チューブエ
ンドに接続するとき、上記コネクタとチューブエンドの外側から目視できないように設け
られている腹腔鏡コネクタ。

【請求項 6】

請求項 1 記載の腹腔鏡コネクタにおいて、上記シールは、化学結合剤によって、上記ベ
ースに化学的に接合されている腹腔鏡コネクタ。

【請求項 7】

請求項 1 記載の腹腔鏡コネクタにおいて、上記シールは、流体を内包した少なくとも一つ
のポケットを備え、このポケットは、上記シールの少なくとも一部の変形に伴って破裂し
、上記流体を流出させる腹腔鏡コネクタ。

【請求項 8】

請求項 1 記載の腹腔鏡コネクタにおいて、上記シールは、上記コネクタを上記チューブエ
ンドに接続するとき、少なくとも部分的に目視可能である腹腔鏡コネクタ。

【請求項 9】

請求項 1 記載の腹腔鏡コネクタにおいて、上記シールは、上記チューブエンドに係合した
とき、永久変形する腹腔鏡コネクタ。

【請求項 10】

請求項 1 記載の腹腔鏡コネクタにおいて、上記ベースと上記シールの少なくとも一方は、
所定回数の使用又は所定使用時間の後、永久に溶け、変形し、あるいは破壊される材料か
らなっている腹腔鏡コネクタ。

【請求項 11】

請求項 1 記載の腹腔鏡コネクタにおいて、上記ベースの材料は、上記シールの材料より硬
質である腹腔鏡コネクタ。

【請求項 12】

請求項 1 記載の腹腔鏡コネクタにおいて、

上記ベースは、その内面に少なくとも一つの凹部と突起を備え、

10

20

30

40

50

上記シールは、上記少なくとも一つの凹部と突起に機械的に永久に接着されている腹腔鏡コネクタ。

【請求項 1 3】

請求項 1 記載の腹腔鏡コネクタにおいて、上記ベースの遠位端は、上記器具チップの近位端に可動に結合されている腹腔鏡コネクタ。

【請求項 1 4】

請求項 1 記載の腹腔鏡コネクタにおいて、上記ベースの遠位端は、上記器具チップの近位端に着脱可能にねじ結合されている腹腔鏡コネクタ。

【請求項 1 5】

請求項 1 記載の腹腔鏡コネクタにおいて、

10

上記シールは、上記コネクタが上記チューブエンドへ接続されていない状態では、上記ベースから近位方向へ延び、

上記ベースは、上記コネクタが上記チューブエンドに取り付けられた状態では、上記チューブエンドに対して面接触する腹腔鏡コネクタ。

【請求項 1 6】

請求項 1 記載の腹腔鏡コネクタにおいて、上記シールの外径は上記ベースの外径未満である腹腔鏡コネクタ。

【請求項 1 7】

請求項 1 記載の腹腔鏡コネクタにおいて、上記ベースと上記シールの少なくとも一方は、化学殺菌処理又は加熱殺菌処理されたとき、変形し、退化し、あるいは溶ける材料から構成されている腹腔鏡コネクタ。

20

【請求項 1 8】

請求項 1 記載の腹腔鏡コネクタにおいて、

上記シールの外径は、上記コネクタが上記チューブエンドに結合されていない状態では、上記ベースの内径を越えて径方向外側に延びてあり、

上記シールの外径は、上記コネクタが上記チューブエンドに取り付けられている状態では、上記ベースの内径内にある腹腔鏡コネクタ。

【請求項 1 9】

ルーメンと摺動可能な内軸を有するチューブ；

30

上記チューブの遠位端に取り付けられる器具チップ；及び

バックハブとこのバックハブに永久結合されたシールを有し、上記器具チップに取り付けられるコネクタ；

を有し、

上記シールは上記チューブに係合したとき変形する腹腔鏡装置。

【請求項 2 0】

請求項 1 9 記載の腹腔鏡装置において、上記器具チップと上記コネクタは一体に形成されている腹腔鏡装置。

【請求項 2 1】

請求項 2 0 記載の腹腔鏡装置において、上記チューブは、上記チューブエンドの外囲から上記内軸を電気的に絶縁し、流体的にシールする腹腔鏡装置。

40

【請求項 2 2】

請求項 1 9 記載の腹腔鏡装置において、上記バックハブは、ねじ、プレス嵌め、バヨネット、ボールディント機構、バレルピン、及びドッグ・トゥース・ラチエット機構の何れかを備えている腹腔鏡装置。

【請求項 2 3】

請求項 1 9 記載の腹腔鏡装置において、上記シールは、流体を内包した少なくとも一つのポケットを備え、このポケットは、上記シールの少なくとも一部の変形に伴って破裂し、上記流体を流出させる腹腔鏡装置。

【請求項 2 4】

請求項 1 9 記載の腹腔鏡装置において、上記シールは、上記コネクタを上記チューブエン

50

ドに接続するとき、少なくとも部分的に目視可能である腹腔鏡装置。

【請求項 25】

請求項 19 記載の腹腔鏡装置において、上記バックハブと上記シールの少なくとも一方は、所定回数の使用又は所定使用時間の後、永久に変形し、溶け、あるいは破壊される材料からなっている腹腔鏡装置。

【請求項 26】

請求項 19 記載の腹腔鏡装置において、上記バックハブの材料は、上記シールの材料より硬質である腹腔鏡装置。

【請求項 27】

器具チップを腹腔鏡のチューブエンドに接続するコネクタであって、

該コネクタは、

該コネクタのボディを形成する、内部に器具チップアクチュエータを収容するルーメンを有するベース；及び

上記コネクタを上記チューブエンドに結合したとき変形するシール；

を有し、

上記ベースと上記シールは、単一の材料から構成され、

上記ベースと上記シールの一方は、上記シールが上記ベースよりも可撓であるように、化学的に、光学的にあるいは放射線学的に処理されている腹腔鏡コネクタ。

【請求項 28】

チューブエンドに接続される器具チップであって、

上記器具チップは、

内部に端部処置具アクチュエータを収容する中空部を有するバックハブ；

上記端部処置具アクチュエータによって動作され、目標物に係合するように構成された端部処置具；及び

上記バックハブの内面に永久接合され、上記コネクタを上記チューブエンドに接続したとき変形するように構成されたエラストマーシール；
を有することを特徴とする器具チップ。

【請求項 29】

請求項 28 記載の器具チップにおいて、

上記端部処置具アクチュエータは、上記端部処置具を機械的に動作させるように構成されたヨークからなり、

上記ヨークの近位端は、上記チューブエンド内に位置する軸方向可動ロッドに結合されるように構成されている器具チップ。

【請求項 30】

請求項 28 記載の器具チップにおいて、

上記バックハブは、その内面に、上記チューブエンドの対応するねじと係合するように設けられたねじを有し、

上記端部処置具アクチュエータは、上記端部処置具を機械的に動作させるように構成されたヨークからなり、

上記ヨークの近位端は、上記チューブエンド内に位置する軸方向可動ロッドの対応するねじにねじ結合されるねじを備えている器具チップ。

【請求項 31】

請求項 28 記載の器具チップにおいて、

上記バックハブは、その内面に少なくとも一つの凹部と突起を備え、

上記シールは、上記少なくとも一つの凹部と突起に機械的に永久に接着されている器具チップ。

【請求項 32】

請求項 28 記載の器具チップにおいて、上記シールは、化学結合剤によって、上記ベースに化学的に接合されている器具チップ。

【請求項 33】

10

20

30

40

50

チューブエンドに接続されるコネクタを形成する方法であって、

該方法は、

中空部を有するコネクタベースを成形し、かつ該コネクタベースの内面に少なくとも一つの凹部と突起を成形するステップ；

このコネクタベースを成形型内に位置させるステップ；及び

上記成形型内に、液体シリコーン材料を射出し、このシリコーン材料を硬化させて、該シリコーン材料を上記少なくとも一つの凹部と突起に機械的に永久に接着させ、上記コネクタベースの近位端にシールを形成するステップ；

を有することを特徴とするコネクタの形成方法。

【請求項 3 4】

チューブエンドに接続されるコネクタを形成する方法であって、

該方法は、

中空部を有するコネクタベースを成形するステップ；

このコネクタベースを成形型内に位置させるステップ；及び

上記成形型内に、液体シリコーン材料と結合剤を射出し、このシリコーン材料を硬化させて、該シリコーン材料を上記コネクタベースの内面に化学的に永久に接着させ、上記コネクタベースの近位端にシールを形成するステップ；

を有することを特徴とするコネクタの形成方法。

【発明の詳細な説明】

【技術分野】

【0 0 0 1】

本発明は、米国仮出願番号第 6 1 / 4 8 5, 2 6 3 号（2011 年 5 月 12 日出願）及び 1 3 / 4 6 6, 4 2 5 号（2012 年 5 月 8 日出願）に基づく優先権を主張するものであり、その内容は参考することにより全体として本出願の内容に組み込まれている。

【0 0 0 2】

本発明は、例えば、腹腔鏡、骨盤スコープ、関節鏡、胸腔鏡に用いられる腹腔鏡チューブエンド、及び／又は、そのような処置を実行するための電気外科装置を含む器具に関し、より詳しくは、腹腔鏡のチューブエンドに着脱可能なチップを、液密にし、電気的に絶縁するためのコネクタを備える電気外科装置に関する。

【背景技術】

【0 0 0 3】

腹腔鏡検査などのような医学処置では、患者への挿入のためにチューブの先端にチップを使用すると、必要な切開を最小限とすることができる、安価でより早い回復を望むことができるため有益である。例えば、比較的大きな切開（回復のためにおよそ 1 カ月を必要とするかもしれない）を必要とする侵襲的技法と対照的に、腹腔鏡手術を受ける患者は、2, 3 日から 1 週間の期間内に、通常の活動に戻れる可能性がある。以下「腹腔鏡下である」という語が使われるが、「腹腔鏡下である」という語は、例えば、比較的小さな切開で済む、関節鏡、内視鏡、骨盤スコープ及び／又は胸腔鏡またはこれらに類似し関連した処置を含むものである。

【0 0 0 4】

しかしながら、チップが腹腔鏡装置のチューブエンドに着脱可能に接続されているとき、流体が接続を破ってチップまたはチューブエンドの内部に入ると、問題が起こる可能性がある。例えば、敗血症の汚染が腹腔鏡装置で起こり、或いは漏電が生じるかも知れない。装置は、腹腔鏡の処置の後、加熱、冷却及び化学薬品による洗浄を含む種々の方法によって、ブラッシング、清掃及び／又は殺菌のための化学処理に曝される。また、ハンドピースのシールは、劣化して完全性を失う可能性がある（数百サイクルの過使用と、ハンドピースの酷使のいずれによっても）。その結果、手術部位のまわりで構造に損害と怪我を引き起こす予想外の焼灼が生じ得る。

【0 0 0 5】

使い捨てデバイス（SUD、single-use device）の再加工及び再使用は、経費を削減し無

10

20

30

40

50

駄を省くために、ますます一般的になっている。しかしながら、再加工された使い捨てデバイス（例えば切断刃）は、再加工されなかつた使い捨てデバイスのようには機能しない場合が多い。例えば、切断刃を再加工する場合、その刃は外科的な手技によって鋭利さが失われ、あるいは再加工プロセスの間に、その刃が望まれるあるいは要求される精度で開閉または切斷できないようにダメージを受ける可能性がある。さらに、多数の凸凹形状のために、使い捨てデバイスは完全に殺菌することができない。従って、切断刃を含む再加工されたチップは、再加工の後にはよく動作せず、患者に危害を与えるかも知れない。再加工されたチップの標準以下の性能は、再加工されたチップを製造した正規メーカーの責任とされ、その正規メーカーの評判を落とすことになる。

【0006】

10

図1は、従来のチップ（例えばSUD）20を着脱可能な再使用可能なハンドピース200のチューブエンド11を示している。チップ20は、はさみや把持装置のような形の端部処置具202を備えている。チューブエンド11はチューブ61から延びていて、同チューブ61は、手術を行う医療関係者または医者によって使用可能なハンドル（あるいはチップ20を動かすための図示しない他の適当な制御手段）を有するハンドピース200から延びている。チューブエンド11は、典型的にはEPDM（エチレン・プロピレン・ジエン・モノマー）から形成されるエラストマーのチューブエンドシール15を備えている。ユーザにとっては、シール15の完全性がいつ失われたかを知ることは難しい。そして、一旦完全性が失われると、電気外科エネルギーが装置に印加されるどんな時でも、付随被害が起こり得る。図示例では、腹腔鏡外科的チップ20は、二重ねじ構造のねじコネクタを使ってハンドピース200のチューブに組み付けられている。別言すると、チップ20は外ねじ（雄ねじ）155を有するヨーク150を備え、このヨーク（外ねじ）155は、チューブ61の長さに沿って延びる作動ロッド（図示せず）の内ねじ（雌ねじ）に係合する（この係合によって端部処置具が動作される）。また、バックハブ400は、該バックハブ400をチューブ61に固定するためにチューブエンド11の外ねじ21と係合する内ねじ（図示せず）を備えている。このような結合は一般的に、結合された構成要素に50ポンドの負荷を与える。ハンドピース200のシール15はバックハブで圧縮され、電気バリア及び流体バリアを作る。図2は、図1のハンドピース200に熱シュリンク25を付した医療チップを示している。

20

【0007】

30

図3は、シール15に代えて、フレアー型の熱シュリンク25をチューブ61でシールするために使い捨てチップ20に用いた腹腔鏡装置を示している。また、図3の装置は、図1-2の二重ねじ構造を用いる代わりに、作動ロッドをヨークに接続する（チューブエンドとバックハブの間の）シングルねじ接続と、（端部処置具の作動のために）ボール41とI字溝の結合を使っている。

【発明の概要】

【発明が解決しようとする課題】

【0008】

40

本発明は、チューブエンドと器具チップを接続する腹腔鏡装置に用いる少なくとも2つの材料から形成されたコネクタを提供することを目的とする。本コネクタは、剛体からなるベースと一体に成形されたシールを含んでおり、電気的に絶縁で、流体の侵入に対して保護される器具チップとチューブエンド間の接続構造を提供することを目的とする。

【課題を解決するための手段】

【0009】

本発明の一実施形態によると、コネクタは腹腔鏡チューブエンドを器具チップに接続し、コネクタのボディを形成するベースとこのベースに一体に形成されたシールを含んでいる。ベースは電気絶縁性で、チューブエンドを器具チップに接続するように構成されており、シールは、少なくとも一方に係合部分を有し、係合時には伸張する。

【0010】

1つの態様では、係合部分は、チューブエンドと器具チップの少なくとも一方に係合し

50

、両者の係合部分で液密にし、電気的に絶縁する。

【0011】

また、別の態様では、ベースは剛体からなっていて、円筒形、円形、正方形、矩形及び三角形のうちの1つに形成される。

【0012】

別の態様では、一体に形成されたベースとシールは、単一のコンポーネントとして、異なる材料から形成される。更に別の態様では、シールは、流体を内包するプラスチック材料を含んでおり、この流体は、係合状態で解放され、絶縁材料として作用する。

【0013】

一つの態様では、シールは、少なくともチューブエンドと器具チップの少なくとも一方と係合することで、少なくとも一部が破壊される。

【0014】

本発明は、その一つの態様では、器具チップを腹腔鏡のチューブエンドに接続するコネクタであって、該コネクタは、該コネクタのボディを形成する、内部に器具チップアクチュエータを収容するルーメンを有するベース；及び上記ベースの近位端の内面に永久接着され、上記コネクタを上記チューブエンドに接続したとき変形するように設けられたシール；を有することを特徴としている。

【0015】

一つの態様では、上記器具チップアクチュエータは、上記コネクタを上記チューブエンドに接続するとき、チューブエンドの外周から電気的に絶縁され、流体的にシールされる。コネクタは器具チップと一体に形成することができる。

【0016】

本発明の別の態様では、上記ベースとシールの少なくとも一方には係合領域が存在し、この係合領域は、ねじ、プレス嵌め、バヨネット、ボールディテント機構、バレルピン、及びドッグ・トゥース・ラケット機構の何れかからなり、かつこの係合領域は、上記チューブエンドの対応する係合領域に係合するように設けられている。さらに、シールは、上記コネクタを上記チューブエンドに接続するとき、上記コネクタとチューブエンドの外側から目視できないように設けることができる。

【0017】

また、別の態様では、シールは、化学結合剤によって化学的にベースに接合される。ベースの材料は、シールの材料より硬質とすることができる。

【0018】

本発明のコネクタの一態様では、上記シールは、上記チューブエンドに係合したとき、永久変形する。また、上記ベースと上記シールの少なくとも一方は、所定回数の使用又は所定使用時間の後、永久に溶け、変形し、あるいは破壊される材料からなっている。

【0019】

別の態様では、上記ベースは、その内面に少なくとも一つの凹部と突起を備えており、上記シールは、上記少なくとも一つの凹部と突起に機械的に永久に接着されている。

【0020】

上記ベースの遠位端は、上記器具チップの近位端に可動に結合することができる。また、上記ベースの遠位端は、上記器具チップの近位端に着脱可能にねじ結合することができる。

【0021】

また別の態様では、上記シールは、上記コネクタが上記チューブエンドへ接続されていない状態では、上記ベースから近位方向へ延び、上記ベースは、上記コネクタが上記チューブエンドに取り付けられた状態では、上記チューブエンドに対して面接触する。一つの態様では、上記シールの外径は、上記コネクタが上記チューブエンドに接続されていない状態では、ベースの内径を超えて径方向外方に延びており、上記シールの外径は、コネクタがチューブエンドに接続されていないとき上記ベースの内径以内である。

【0022】

10

20

30

40

50

また、シールの外径は、ベースの外径未満である。

【0023】

上記ベースと上記シールの少なくとも一方は、化学殺菌処理又は加熱殺菌処理されたとき、変形し、退化し、あるいは溶ける材料から構成することができる。

【0024】

一実施形態では、コネクタは腹腔鏡チューブエンドを器具チップに接続し、コネクタのボディを形成するベースとこのベースに一体に形成されたシールを含んでいる。ベースは電気絶縁性で、チューブエンドを器具チップに接続するように構成されており、シールは、少なくとも一方に係合部分を有し、係合時には伸張する。

【0025】

本発明は、腹腔鏡装置の態様では、ルーメンと摺動可能な内軸を有するチューブ；上記チューブの遠位端に取り付けられる器具チップ；及びバックハブとこのバックハブに永久結合されたシールを有し、上記器具チップに取り付けられるコネクタ；を有し、上記シールは上記チューブに係合したとき変形することを特徴としている。

【0026】

上記器具チップと上記コネクタは一体に形成することができる。また、上記チューブは、上記チューブエンドの外囲から上記内軸を電気的に絶縁し、流体的にシールする作用をする。

【0027】

上記バックハブは、ねじ、プレス嵌め、バヨネット、ボールディテント機構、バレルピン、及びドッグ・トゥース・ラチェット機構の何れかを備えている。また、上記シールは、流体を内包した少なくとも一つのポケットを備え、このポケットは、上記シールの少なくとも一部の変形に伴って破裂し、上記流体を流出させる。さらに、シールは、コネクタがチューブに接続されている状態で、少なくとも部分的に目視可能とすることができます。

【0028】

上記バックハブと上記シールの少なくとも一方は、所定回数の使用又は所定使用時間の後、永久変形し、溶け、あるいは破壊される材料から構成することができる。

【0029】

また、別の態様では、ベースは剛体からなっていて、円筒形、円形、正方形、矩形及び三角形のうちの1つに形成される。

【0030】

別の態様では、一体に形成されたベースとシールは、単一のコンポーネントとして、異なる材料から形成される。

【0031】

シールは、流体を内包するプラスチック材料を含んでおり、この流体は、係合状態で解放され、絶縁材料として作用する。シールは、少なくとも一つの液体内包ポケットを有し、シールの少なくとも一部が変形するとき、このポケットは破裂し、流体が流出する。

【0032】

上記シールは、上記コネクタを少なくとも上記チューブエンドと器具チップの一方に接続するとき、少なくとも部分的に目視可能とすることができます。

【0033】

別の態様では、上記シールは、少なくともチューブエンドと器具チップの少なくとも一方に係合することで部分的に破壊される。

【0034】

本発明は、腹腔鏡コネクタの別の態様によれば、器具チップを腹腔鏡のチューブエンドに接続するコネクタであって、該コネクタは、該コネクタのボディを形成する、内部に器具チップアクチュエータを収容するルーメンを有するベース；及び上記コネクタを上記チューブエンドに結合したとき変形するシール；を有し、上記ベースと上記シールは、単一の材料から構成され、上記ベースと上記シールの一方は、上記シールが上記ベースよりも可撓であるように、化学的にあるいは放射線学的に処理されていることを特

10

20

30

40

50

徴としている。

【0035】

本発明は、チューブエンドに接続される器具チップの態様では、上記器具チップは、内部に端部処置具アクチュエータを収容する中空部を有するバックハブ；上記端部処置具アクチュエータによって動作され、目標物に係合するように構成された端部処置具；及び上記バックハブの内面に永久接合され、上記コネクタを上記チューブエンドに接続したとき変形するように構成されたエラストマーシール；を有することを特徴としている。

【0036】

この器具チップにおいては、上記端部処置具アクチュエータは、上記端部処置具を機械的に動作させるように構成されたヨークから構成し、上記ヨークの近位端は、上記チューブエンド内に位置する軸方向可動ロッドに結合されるように構成することができる。

10

【0037】

一つの態様では、上記バックハブは、その内面に、上記チューブエンドの対応するねじと係合するように設けられたねじを有し、上記端部処置具アクチュエータは、上記端部処置具を機械的に動作させるように構成されたヨークからなり、上記ヨークの近位端には、上記チューブエンド内に位置する軸方向可動ロッドの対応するねじにねじ結合されるねじを備えることができる。

【0038】

また別の態様では、上記バックハブは、その内面に少なくとも一つの凹部と突起を備え、上記シールは、上記少なくとも一つの凹部と突起に機械的に永久に接着されている。加えて、上記シールは、化学結合剤によって、上記ベースに化学的に接合することができる。

20

【0039】

本発明は、チューブエンドに接続されるコネクタを形成する方法の態様では、中空部を有するコネクタベースを成形し、かつ該コネクタベースの内面に少なくとも一つの凹部と突起を成形するステップ；このコネクタベースを成形型内に位置させるステップ；及び上記成形型内に、液体シリコーン材料を射出し、このシリコーン材料を硬化させて、該シリコーン材料を上記コネクタベースの内面に化学的に永久に接着させ、上記コネクタベースの近位端にシールを形成するステップ；を有することを特徴としている。

30

【0040】

本発明は、チューブエンドに接続されるコネクタを形成する別 の方法では、中空部を有するコネクタベースを成形するステップ；このコネクタベースを成形型内に位置させるステップ；及び上記成形型内に、液体シリコーン材料と結合剤を射出し、このシリコーン材料を硬化させて、該シリコーン材料を上記少なくとも一つの凹部と突起に機械的に永久に結合させ、上記コネクタベースの近位端にシールを形成するステップ；を有することを特徴としている。

【図面の簡単な説明】

【0041】

本発明の実施態様を以下の図面を参照しながら説明する。

40

【図1】従来のシールを備えた再使用可能なハンドピースの一端部の斜視図である。

【図2】図1の腹腔鏡の手術チップを組み立てた状態の斜視図である。

【図3】従来の腹腔鏡装置の斜視図であって、ハンドピースへのシールを作成するために、使い捨てチップに用いられたフレアー型の熱シュリンクを示している。

【図4】本発明の一実施形態による手術チップコネクタの一実施形態を示す側面図である。

【図5】図4のコネクタおよびチップ先端の側面断面図である。

【図6】本発明によるコネクタの実施形態を示す斜視図である。

【図7】腹腔鏡のチューブエンドに接続されたコネクタの実施形態を示す側面断面図である。

【図8】本発明によるコネクタの第2の実施形態を示す側面断面図である。

50

【図9】本発明によるコネクタの第3の実施形態を示す側面断面図である。

【発明を実施するための形態】

【0042】

ここに示される事項は、一例であって、また、本発明の実施形態の例示の議論のみを目的とするもので、本発明の原理及び概念を最も有用で容易に理解できるように示されている。この点に関し、本発明の構造の詳細については本発明の基本的な理解のために必要とされる以上には示していないが、当業者であれば、明細書及び図面から、本発明のいくつかの実施形態がどのようにあるか明らかであり、実際に具体化することができる。

【0043】

図4から図7は、本発明による器具チップコネクタの限定する目的ではない一実施形態を示している。チップ500は、図1、図2に関して記述された再使用可能なハンドピース200に取り付け可能であり、焼灼を持った組織の切除のような低侵襲の腹腔鏡治療を行なうために用いられる。チップ500は、これに限定されないが、具体的には、把持具、結紮ツール、刃、大ばさみ、焼灼ツールのような端部処置具（通電され、またはされない）505を備えている。チップ500は、手術を行なう医療関係者か内科医によって操作可能なハンドル（あるいは他の適切な制御手段（図示せず））に接続されたベース部から伸びるチューブ61のチューブエンド11に係合する。

10

【0044】

図7に最もよく示されるように、チップ500は、外ねじ（雄ねじ）551を有するヨーク550の形のチップアクチュエータとコネクタ100とを備えている。外ねじ551は、チューブ61の長さ方向に伸びる作動ロッド77の内ねじ（雌ねじ）51と係合しチューブに対してX方向に相対移動可能であり（この相対移動により端部処置具が動作し）、コネクタ100は、チューブ61にコネクタ100を固定するために、チューブエンド11の外ねじ21に係合する内ねじ511を備えている。この実施形態では、コネクタ100は、バックハブとして機能しており、以下バックハブと呼ぶことがある。図面では、コネクタ100は上述の二重ねじ結合機構によってチップをチューブ61に接続しているが、当業者には、シングルねじ結合機構（または無ねじ結合機構）を用いることが可能であることが理解される。シングルねじ結合機構では、コネクタ100はチューブエンド11の外ねじ21に係合する内ねじ511を備えているが、ヨーク550と作動ロッド77は、他の機構、例えば、プレス嵌め、バヨネット、ボールディテント機構、バレルピン、ドッグ・トゥース・ラチェット機構等によって結合可能である。無ねじ結合機構では、コネクタ100は、ねじ機構を用いない。チューブエンド11の外ねじ21に係合する内ねじ511に代えて、コネクタ100は、他の機構、例えば、プレス嵌め、バヨネット、ボールディテント機構、バレルピン、ドッグ・トゥース・ラチェット機構等を用いることが可能である。また、図では、チップアクチュエータは、チューブ61に対してX方向に移動可能なヨーク550として描かれているが、当業者には、チップアクチュエータは動く必要がない（つまり、端部処置具が動かないときには）ことが理解される。

20

30

【0045】

コネクタ100は、以下に説明するシール105を備えており、チップ500にねじ結合されている。例えば、図5に示すように、コネクタ100の遠位端は、チップ500の遠位端の外ねじ577に係合する内ねじ566を備えている。しかし、コネクタに外ねじを設け、チップに内ねじを設けてもよい。図では、チップ500にねじ結合されたコネクタ100を示しているが、コネクタとチップは、プレス嵌め、バヨネット、ボールディテント機構、バレルピン、ドッグ・トゥース・ラチェット機構等を介して結合してもよい。また、コネクタと円筒状のチップ部分を単一部材から構成してもよい。

40

【0046】

図6は、コネクタ100の一実施形態を示している。コネクタ100には、図示するように、エラストマーシール105が円筒形状のベース110（つまりシール以外のコネクタの部分）に備えられている。このベース110は、シールを構成する材料より硬い材料で形成されている。シール105とベース110を機械的に接着（機械的に相互ロック）

50

するときには、ベースは、ポリフェニルスルホン（PPSU）（一般に商標Radelで知られる）、ポリスルファン（PSU）（一般に商標Udelで知られる）、あるいは他の適当な高分子または高分子に近いポリマーから構成することができる。

【0047】

本実施形態では、シール105は、シリコーンのような可撓性材料から構成されているが、他の当業者に知られた材料から構成することも可能である。ベース110とシール105を化学的に接合するとき、実際のベース110とシール105の具体的な材料はシリコーン中の接着剤のタイプに基づいて選択することができる。ベース110又はシール105は、化学薬品や熱による殺菌（例えばオートクレーブ滅菌）に曝されたとき、変形するか、退化するか、溶ける材料から構成することができる。このようにして、チップ500の再使用が妨げられる。

10

【0048】

シール105は、以下に説明するように、ベース110と一体に（单一の部材として）形成しても、別体として形成してもよい。同様に、ベース110は、同ベース110がシール105より剛性が高ければ、剛体から構成することも、若干の柔軟性を持つ材料から構成することもできる。この点では、コネクタ100は、单一の要素を形成する少なくとも2つの材料を含んでいる。つまり、ベース110とシール105の材料のは、互に相反する特性を持つ材料から選択されればよい。コネクタ100は、例えば、強く、剛性が高く、電気的絶縁性の高い材料であって、同時に、液体の浸入を防ぐ（標準に準拠した）接続部（シール105の形式で）ができる材料から構成される。コネクタ100の形状は、図示形状に限定されることなく、他の適当な形状とすることができます。

20

【0049】

図では、シール105の長さは、ベース110の中にX方向に部分的に伸びているよう描かれているが、このX方向の長さは、適当に定めることができ、ベース110の全長に渡って設けてもよい。この点に関して、図では、内ねじ511がベースと同様の剛体に形成されているが、シール105が内ねじを備えていてもよい。

20

【0050】

コネクタ100のシール105は、例えば、図1に示す再使用可能なハンドピースのチューブエンドシール15の機能を補完し、あるいはこれに代わるものである。コネクタ100は剛体または電気的絶縁物からなり、また、全体がまたは部分的にエラストマー材料からなっている。エラストマー材料としては、限定するものではないが、例えば、天然ゴム、合成ゴム、プラスチック（例えばポリエチレン、ポリプロピレン、PPSU、PSUあるいは他の適切なプラスチック・ポリマー）、及び／又は樹脂（及び／又は任意の適切な混合あるいはその合成物。エラストマー材料はこれらに限定しない）が含まれる。さらに、シール105は、ベース110とは別の材料から構成し、その一端又は両端をベース110に一体に結合してコネクタ100を形成することができる。シール105は、ベース110と一体に形成するのではなく、別体として形成して、ベース110へ接着してもよい。

30

【0051】

図4に示すように、非結合状態では、シール105は、ベース110を過ぎてX方向の近位端に伸びている。また、（図4-5に示すように、）このシール105の外径は、さらにベース110の内径を越えて径方向外方に伸びている。図7に示すように、コネクタ100がチューブエンド11に螺合結合されると、シール105はチューブ61の遠位端（フランジ40）に当接して変形する。そして、チューブエンドシール15の外側に向かって径方向内方に力が加わると、シール105はもはやベース110を超えてX方向の近位に伸びることも、ベース110の内径を超えて径方向外方に伸びることもなく、結合された装置の直径をシールが超えることはない。この図7に示されるように、結合されると、コネクタは、チューブ61のチューブエンド11に直接平面的に当接する。チューブ61の端部へチップ500を取り付ける間、ユーザはシール105を目視することができ、ユーザは、チップ500をチューブ61に取り付ける際にエラーが生じているかどうか知ることができ、チップの取付直しや別のチップを用いることが可能となる。この効果を高

40

50

めるため、シール105は、コネクタ100およびチューブ61の色と対照をなす色（コントラストが高い色）にすることができる。コネクタ100、チップ500及びチューブ61は、操作を容易にするため、同一の外径とすることが好ましい。

【0052】

コネクタ100はハンドピース200に適合する能力により、チューブエンドシール15のような他のシールメンバーと共に使用されたとき、結合部におけるシール能力を増大させる（シール105をチューブエンドシールに置き換えることも可能であるが）。この付加的なシール能力は、チューブエンドシール15の状態に拘わらず、ハンドピース200の安全な使用を可能とする。コネクタ100は、任意の所望の形に形成することができ、図示された特定の実施形態に限定されない。

10

【0053】

図7に示すようにチューブ61にチップ500を取り付けると、腹腔鏡のチューブエンド11の内部（つまりヨーク550とロッド77が作動する空間）に、チップ500またはチューブエンド11の周囲にある液体が浸入するのが防止される。さらに、チューブ61（フランジ40）とシール105の遠位端の間の圧力、接着性及びシール105の弾性が液密を保持するので、腹腔鏡チューブエンド11をチューブ61とチップ500の外部から電気的に絶縁し流体的にシールする。さらに、シール105のエラストマー材料の絶縁特性は、高い電気インピーダンスを生じさせて電気的に絶縁する。加えて、コネクタ100中のシール105の圧力は、フランジ40に完全に結合した状態では、腹腔鏡チューブエンド11からのコネクタ100の離脱及び／又は回転を防止する。なぜなら、コネクタ100のシール105とフランジ40との当接によって生じる摩擦抵抗は、チューブエンド11からのコネクタ100の回転とねじ結合の弛みを防ぐように作用するからである。シール105及び／又はコネクタ100の構成、形状及び／又は材料は、例えば、シール105との摩擦接触、流体のシールの有効性及び／又はその電気インピーダンスの有効性を最適化するように選択される。

20

【0054】

コネクタ100は、これに限定される訳ではないが、例えばインサート成形プロセスによって形成される。この成形プロセスでは、成形されたベース110が型に插入され、シール材料（例えばシリコーン）が型内に射出されてベースに結合され、コネクタが作成される。シール105は、化学的に及び／又は機械的に、ベース110に結合される。化学結合の場合には、化学結合剤（例えば接着促進剤）と混ぜられたシール材料が、型内へ射出され、硬化プロセス中に、シール105はベース110に化学的に永久に結合され、コネクタ100を破壊しない限り、ベースから離れない。

30

【0055】

機械的結合の場合には、シール105に面するベース110の内側の一部に、シール材料を受け入れるための1つ以上の凹部（例えば凹んだチャンネル）、1つ以上の突起、または凹部と突起の組み合わせが形成される。次に、シール材料（化学結合剤を含まない）が型内へ射出され、これらの凹部及び／又は突起内に入って硬化する。シール105を成形すると、2セットの材料特性を有する、機械的に統合された、永久に接合されたコンポーネント（コネクタ100）が作成される。凹部／突起の組み合わせは、ベース110の内面のシール105との接触面積を増加させ、その結果、コネクタ100を破壊しない限り、ベース110からシール105を取り外すことはできない。シール105とベース110は、化学的結合と機械的結合を組み合わせて結合することも可能である。

40

【0056】

コネクタ100はまた、これに限定される訳ではないが、ダブルモールドプロセスによって形成することができる。このダブルモールドプロセスでは、最初に第一成形材料（ベース110）が型内に射出される。第一成形（ベース110の成形）が終了すると、第2の成形材料（シール105）が同じ型内に射出され、ダブルモールド複合コネクタが形成される。上述の化学的及び／又は機械的結合プロセスをこのダブルモールドプロセスに用いることができる。

50

【0057】

シール105は、これに限定される訳ではないが、（例えばモールドによって形成される）ベース110とは別に成形される可撓性材料（可撓性リングのような）を含んでもよく、この可撓性材料は、コネクタ100を形成するために、ベース110に挿入されまたは載置される。この実施形態では、コネクタ100は、コネクタ100内にベースと一緒に形成されまたは接着されるシールなしで、ベース110とシール105から形成される。

【0058】

図8は、シール106が粘性流体を収容する1つ以上のポケット111を備えたコネクタ101の別の実施形態を示している。この実施形態では、一旦圧縮されると、圧縮の結果ポケットが破れ、コネクタ101の内部で流体（シリコーン溶液を含み、これらに限定されない）が流出する。別言すると、チューブ61にコネクタ101を組み付けると、液体はポケット111内で圧縮され、コネクタ-チューブ結合の中に残存するクリアランス内に流れ出す。流れ出た流体は、付加的な絶縁材として働く。さらに、破れたポケットはシール105の形状を変更するので、チップ500の再使用を防止することができる。

【0059】

シール105は、別の実施形態では、チップ500が適切に装着されていることを視覚的な確認するため、ユーザに完全にまたは部分的に見えるようにすることができる。あるいは、ベース110とチューブ61の色に対照（コントラスト）を与えてよい。シール105は、1回使用（あるいは、複数回（予め定めた回数）の使用）したら部分的にあるいは完全に溶け、変形し、あるいは破壊されるように設計してチューブエンド11に対して1回だけ使用できるようにし、チップ500が再使用されることを防ぐことができる。別言すると、シール105の内部材料は、チップ500をチューブ61に取り付けるために、チューブエンド11の外面（例えば、ねじ21）が一旦シールの内側材料（例えば、対応するねじ511）に係合したら、その内側材料が永久に変形する材料から形成し、チューブエンド11とチップ500の結合が解かれたら、チューブエンド11とチップ500が確実に（すなわち、器具65が医療処置に用いられるほど）再結合されることがないようにすることができる。このようにして、チップ500の再使用を防ぐことができる。

【0060】

図9は、本発明によるコネクタ102のさらに別の実施形態を示している。単一の要素を形成するために、結合される少なくとも2つの材料を含む上述のコネクタ100に代えて、コネクタ102は単一のタイプの材料から作られている。すなわち、このコネクタ102は、X方向の2つの異なる領域において2つの異なるエラストマー特性を示すように、材料特性を変化させる処理が施されている。別言すると、コネクタ102の一部は、化学的に（化学薬品の適用によって）、光学的に（光線の適用によって）あるいは放射線学的に（放射線の適用によって）処理され、その部分が他の部分（処理されていない部分）よりも硬くまたは柔らかくされている。一例を挙げると、コネクタ102をPTFE（ポリテトラフルオロエチレン）から作り、その一部分108に放射線を照射すると、この部分108は硬くなる。つまり、放射線が照射されていない部分103より硬くなって、シールとして用いることができる。コネクタのこのような処理は、チップ500をチューブ61に取り付ける前または後に行うことができる。

【0061】

本明細書による開示は、その様々な態様、実施形態及び/又は特定の特徴の1つ以上あるいは附属要素によって、1つ以上の利点を示すことを意図したものである。本明細書は、医療機器と処置に関する記述を含んでいるが、本発明は、医療以外の様々な他の環境の中で使用されてもよい。

【0062】

ここに記載した実施形態の図面は、様々な実施形態の構造の一般的な理解のために提供することを意図したものである。これら図面は、全ての要素、装置の特徴及びここに記載した製法や構造を利用するシステムの完全な説明を提供することは意図していない。当業

者は本明細書を検討することで、他の多くの実施形態が明らかであろう。他の実施形態は、本明細書の開示範囲から逸脱しない範囲で構造的及び論理的な置換及び変更がなされ、本明細書から導出されて利用されてもよい。また図面は、単に表象であり、原寸に比例していない。図面中、他の部分が最小限に抑えられる一方で、特定部分が誇張されていてもよい。したがって、明細書及び図面は、むしろ、限定的というのではなく、例示的と見なされる。

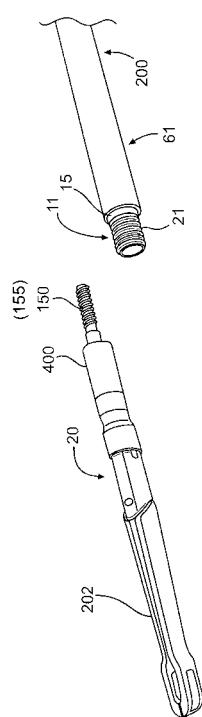
【0063】

ここで、記載した1またはそれ以上の実施形態を、個別及び／又は集合的に、他の特定発明や発明概念に本出願の範囲を自発的に限定することを意図せず、単に利便性のために「発明」という用語を用いて呼ぶ。また、ここでは特定の実施形態について図示及び説明してきたが、図示実施形態に替えて、同一または類似の目的を達成するためのアレンジを施してもよいのは明らかである。この開示は、任意及び全ての後続の適応や様々な実施形態の変形をカバーすることを意図している。上記実施形態の結合は、他の実施形態はここで特別には記載していないが、本明細書の記載を再検討すれば当業者には明らかであろう。

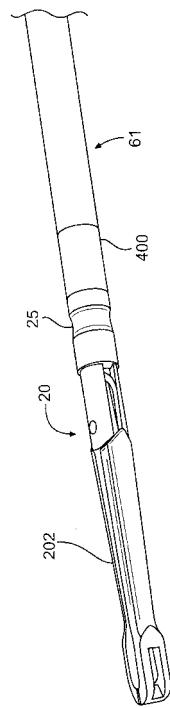
10

【0064】

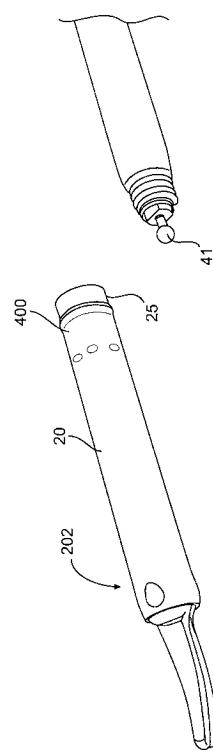
発明の要約は、特許請求の範囲または意味を解釈または限定しないと理解した上で提出されている。さらに、前述の詳細な説明では、開示の合理化をはかるため、様々な機能と一緒にグループ化しあるいは一つの実施形態の中で記載してある。本開示は、クレーム化された実施形態は各請求項に明示的に記載されたよりも多くの機能が要求されるという意図を反映するように解釈されていない。むしろ、前述の請求項を反映させると、本発明の主題は、記載したどの実施形態の機能のすべてよりも少なくなるように向けられている。よって、クレーム事項を別々に定義したように各クレームが自立していることで、前述のクレームは詳細な説明に組み込まれている。

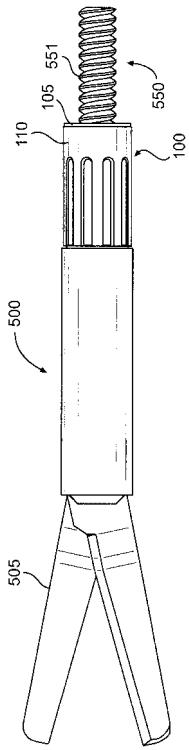

20

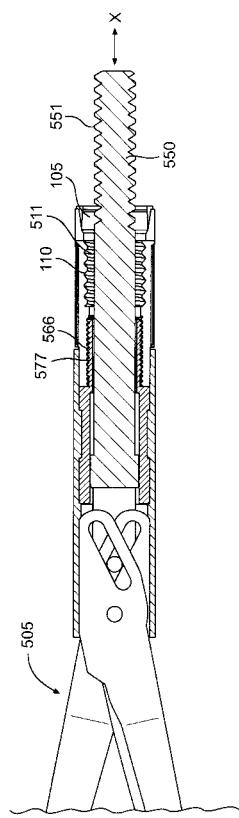
【0065】

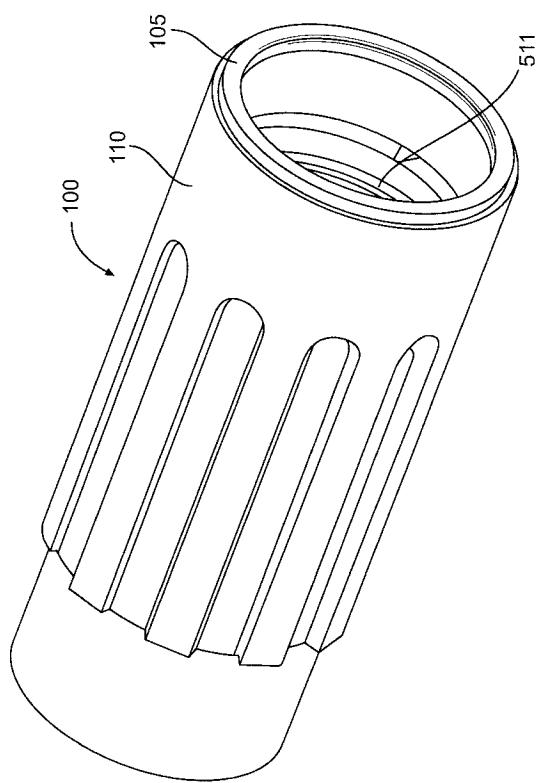

上記記載した事項は例示であって限定ではなく、特許請求の範囲は、そのような修正、機能強化及び本発明の範囲及び趣旨を逸脱しない範囲に収まる他の実施形態のすべてをカバーするよう意図している。だから、法律で許容される最大範囲で、本開示の範囲は、以下の特許請求の範囲及びその均等物の広範な許容解釈によって決定されるべきであり、そして上記の詳細な説明によって制限または限定されない。

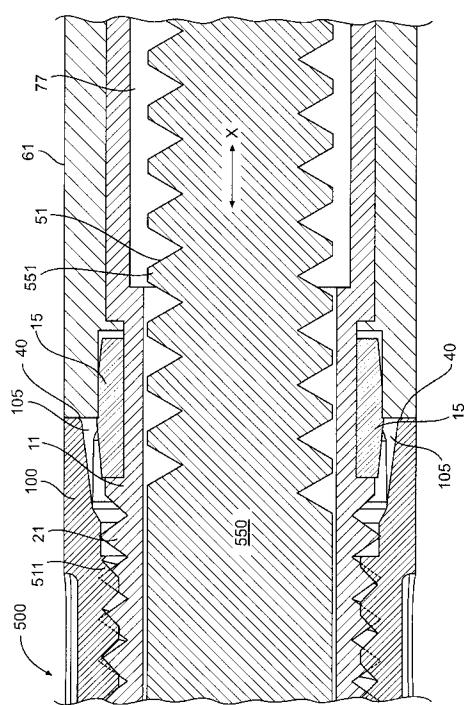
30

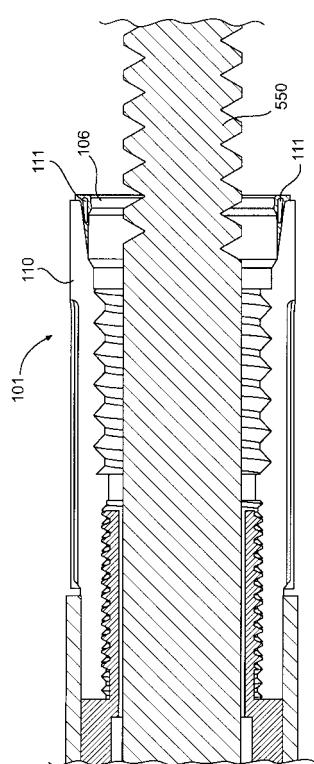

【図 1】

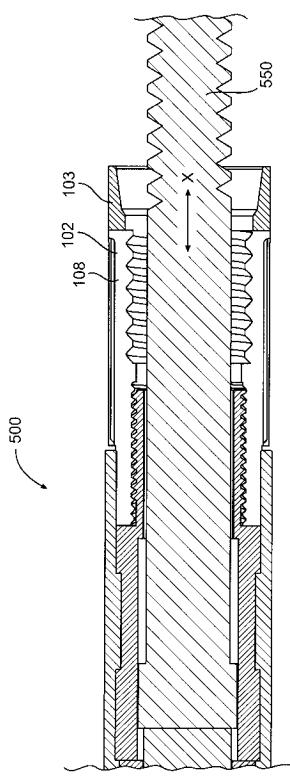

【図 2】


【図 3】


【図 4】


【図5】


【図6】


【図7】

【図8】

【図9】

フロントページの続き

(74)代理人 100135493
弁理士 安藤 大介

(74)代理人 100166408
弁理士 三浦 邦陽

(72)発明者 シャラド ジヨシ
アメリカ合衆国 マサチューセッツ州 01915 ベヴァリー スイート 166T カミング
センター 800 マイクロライン サージカル インコーポレーテッド内

(72)発明者 ジャンリュック ブルノワ
アメリカ合衆国 マサチューセッツ州 01915 ベヴァリー スイート 166T カミング
センター 800 マイクロライン サージカル インコーポレーテッド内

(72)発明者 ク里斯 エー デヴリン
アメリカ合衆国 マサチューセッツ州 01915 ベヴァリー スイート 166T カミング
センター 800 マイクロライン サージカル インコーポレーテッド内

(72)発明者 ピーター アリスキー
アメリカ合衆国 マサチューセッツ州 01915 ベヴァリー スイート 166T カミング
センター 800 マイクロライン サージカル インコーポレーテッド内

(72)発明者 ラス ラロシュ
アメリカ合衆国 マサチューセッツ州 01915 ベヴァリー スイート 166T カミング
センター 800 マイクロライン サージカル インコーポレーテッド内

(72)発明者 ク里斯 サリバン
アメリカ合衆国 マサチューセッツ州 01915 ベヴァリー スイート 166T カミング
センター 800 マイクロライン サージカル インコーポレーテッド内

F ターム(参考) 4C160 GG28

4C161 AA24 BB00 CC00 DD00 GG11

【外國語明細書】

CONNECTOR FOR A LAPAROSCOPIC SURGICAL SYSTEM

CLAIM FOR PRIORITY

[001] This application claims the benefit of priority to U.S. Provisional Application No. 61/485,263, filed May 12, 2011, the contents of which are expressly incorporated by reference herein.

BACKGROUND

1. Field of the Invention

[002] This invention relates to an instrument including an electrosurgical apparatus, such as a laparoscopic tube end used for performing laparoscopic, pelvoscopic, arthroscopic, thoroscopic and/or similar such procedures, and more particularly to an electrosurgical apparatus having a connector for fluidically sealing, isolating and electrically insulating a detachable tip when engaged with a laparoscopic tube end.

2. Background of the Invention

[003] Medical procedures such as laparoscopy and the like, which employ a tip at the end of a tube for insertion into the patient, are beneficial because the incisions necessary to perform them are minimal in size, therefore promoting more rapid recovery and lower costs. For example, a patient who undergoes laparoscopic surgery may typically return to normal activity within a period of a few days to about a week, in contrast to more invasive procedures requiring a relatively larger incision (which may require about a month for recovery). Although the term "laparoscopic" is typically used hereinafter, such use of the term "laparoscopic" should be understood to encompass any such similar or related procedures such as, for example,

arthroscopic, endoscopic, pelvoscopic and/or thoroscopic or the like, in which relatively small incisions are used.

[004] However, when a tip is detachably connected to the tube end of a laparoscopic device, complications may occur if fluid breaches the connection and enters the interior of the tip or tube end. For example, septic contamination may arise in the laparoscopic device and/or electrical current may unintentionally leak therefrom. After each laparoscopic procedure, the device is also exposed to brushing, chemicals for cleaning and/or sterilization by various methods which may include heating, cooling, and flushing with additional chemicals. The seal in the handpiece may degrade to the point where it loses its integrity (either over use of hundreds of cycles, or from handpiece abuse; which can result in unintended cautery causing damage and injury to structures around a surgical site).

[005] The practice of reprocessing and reusing single-use devices (SUDs) has become increasingly more common because of costs savings and the reduction in waste. However, reprocessed SUDs, such as cutting blades, often do not function as well as SUDs that have not been reprocessed. For example, in the case of reprocessing a cutting blade, the blade may be dulled during the surgical procedure or may be damaged during the reprocessing process such that the cutting blade no longer cuts or opens and closes with the desired or required precision. Further, due to the extensive nooks and crannies, SUD's often cannot be thoroughly sterilized. Therefore, a reprocessed tip, such as those including a cutting blade, may not operate as well after reprocessing any may even result in harm to the patient. Therefore, it is possible that any subpar operation of the reprocessed tip may be incorrectly attributed to the original manufacturer of the reprocessed tip, which may result in damage to the reputation of the original manufacturer.

[006] Figure 1 shows a tube end 11 of a reusable handpiece 200 to which a conventional tip (which may be a SUD) 20 may be removably attached. The tip has an end effector 202 in the form of a scissors, grasper and the like. The tube end 11 distally extends from a tube 61, which in turn distally extends from the handpiece having handles (or other suitable controls, not shown, for actuating the tip 20) operable by the medical personnel or physician performing the surgery. The tube end 11 includes an elastomeric tube end seal 15, which is typically made from EPDM (ethylene propylene diene monomer). It is often difficult for users to detect when a seal 15 has worn to the point where integrity has been lost. Once integrity is lost, collateral damage can occur any time electrosurgical energy is applied to the device. In the illustrated device, the laparoscopic surgical tip 21 is assembled to the tube of the handpiece 200 using a dual-threaded threaded connector. In other words, the tip 20 includes a yoke 150 having external threading 155, which engages complementary internal threading on an actuation rod (not shown) extending along the length of the tube 61 (thereby providing for the actuation of the end effector), and a back hub 400 includes internal threading (not shown) which engages complimentary external threading 21 on the tube end 11 to secure the back hub to the tube 61. Such an attachment typically creates a 50 pound load on the attached components. The seal 15 on the handpiece 200 is compressed by the back hub to create a barrier for electricity and fluids. Figure 2 shows an surgical tip affixed to a handpiece 200 of Figure 1 with a heat shrink 25.

[007] Figure 3 illustrates a laparoscopic device in which, rather than a seal 15, a piece of flared heat shrink 25 is used on the disposable tip 20 to create a seal with the tube 61. Also, the device of Figure 3 does not use the dual-threaded design of Figures 1-2, but instead uses a single threaded connection (between the tube end and the back hub) and a ball 41-and-clevis arrangement to connect the actuation rod to the yoke (for actuation of the end effector).

SUMMARY OF THE INVENTION

[008] A connector formed from at least two materials for use with a laparoscopic device to interface a tube end with a tip end. The connector includes a rigid base and a seal that are integrally formed to provide a connection between the tube end and the tip end that is electrically insulative and protects against fluid intrusion.

[009] In one embodiment, there is a connector for interfacing a laparoscopic tube end with an instrument tip, including a base forming a body of the connector, the base being electrically insulative and configured to interface with the tube end and the instrument tip, and a seal integrally formed with the base, the seal having an engagement part on at least one side and expanding upon being engaged.

[010] In one aspect, the engagement part engages with at least one of the tube end and the instrument tip, thereby fluidically sealing and electrically insulating the connection therebetween.

[011] In yet another aspect, the base is rigid and formed as one of a cylindrical shape, circular shape, square shape, rectangular shape and triangular shape.

[012] In another aspect, the integrally formed base and seal are formed as a single component and from different materials. In still another aspect, the seal includes a plastic material encasing a fluid, whereby the fluid is released and acts as an insulative material upon being engaged.

[013] In another aspect, the seal is at least partially destroyed upon being engaged with at least one of the tube end and the instrument tip.

[014] An aspect provides a connector for connecting an instrument tip with a laparoscopic tube end, the connector having a base forming a body of the connector, the base having a lumen configured to accommodate an instrument tip actuator therein, and a seal permanently bonded to

an inner surface of a proximal end of the base and configured to deform upon connection of the connector with the tube end.

[015] In a further aspect, when the connector connects to the tube end, the instrument tip actuator is electrically insulated and fluidically sealed from the outside of the tube end. Further, the connector may be unitarily formed with the instrument tip.

[016] In another aspect, the connector can further include an engagement region on at least one of the base and the seal, wherein the engagement region is one of threaded, press-fit, bayonet, ball-and-detent, barrel pin, dog-tooth ratchet mechanism, and the engagement region is configured to engage a complimentary engagement region on the tube end. Further, in a non-limiting aspect, when the connector connects to the tube end, the seal is not visible from the exterior of the connector and tube end.

[017] In yet another aspect, the seal may be chemically bonded to the base by a chemical bonding agent. Also, the base material may be more rigid than the seal material.

[018] In a further aspect, the seal is permanently deformed upon being engaged with the tube end. Also, at least one of the base and seal is one of permanently, dissolved, deformed and destroyed after a predetermined number of uses or predetermined amount of time.

[019] In another aspect, the base includes at least one of a recess and protrusion on the inner surface thereof, and the seal is permanently mechanically bonded to the at least one of the recess and protrusion.

[020] In yet another aspect, a distal end of the base is configured to removably attach to a proximal end of the instrument tip. Also, the distal end of the base may be configured to removably threadably attach to the proximal end of the instrument tip.

[021] In still another aspect, the seal proximally extends from the base when the connector is unattached to the tube end, and the base fits flush against the tube end when the connector is attached to the tube end. In a further aspect, an outer diameter of the seal extends radially outwardly beyond an inner diameter of the base when the connector is unattached to the tube end, and the outer diameter of the seal is within the inner diameter of the base when the connector is attached to the tube end.

[022] Also, an outer diameter of the seal may be less than an outer diameter of the base.

[023] In a further aspect, at least one of the base and seal at least one of deforms, degrades and dissolves when exposed to chemical or heat sterilization.

[024] In another aspect, provided is a laparoscopic device, including a tube end having an outer tube end and an inner shaft, an instrument tip configured to engage with the tube end, and a connector having a base and seal, the seal having an engagement part on at least one side and expanding upon being engaged with at least one of the tube end and the tip end.

[025] In a further aspect, provided is a laparoscopic device, having a tube having a lumen and a slideable inner shaft, an instrument tip configured to be affixed to a distal end of the tube, and a connector affixed to a proximal end of the instrument tip having a back hub and seal permanently bonded to the back hub, the seal configured to deform upon engaging the tube.

[026] In an additional aspect, the instrument tip and the connector are unitarily formed together. Also, the tube may electrically insulate and fluidically seals the inner shaft from the outside of the tube end.

[027] In another aspect, the back hub is one of threaded, press-fit, bayonet, ball-and-detent, barrel pin, dog-tooth ratchet mechanism. Also, the seal may include at least one fluid-encased pocket, wherein upon deformation of the at least a portion of the seal, the pocket is ruptured and

fluid is released. Further, the seal may be at least partially visible when the connector is connected to the tube.

[028] In yet another aspect, at least one of the back hub and seal is one of permanently deformed, dissolved and destroyed after a predetermined number of uses or predetermined amount of time.

[029] In another aspect, the base is rigid and formed as one of a cylindrical shape, circular shape, square shape, rectangular shape and triangular shape.

[030] In still another aspect, the integrally formed base and seal are formed as a single component and from different materials.

[031] In another aspect, the seal includes a plastic material encasing a fluid, whereby the fluid is released and acts as an insulative material upon being engaged. The seal may include at least one fluid-encased pocket, wherein upon deformation of the at least a portion of the seal, the pocket is ruptured and fluid is released.

[032] In still another aspect, the seal is at least partially visible when the connector is interfaced with at least one of the tube end and instrument tip.

[033] In another aspect, the seal is at least partially destroyed upon being engaged with at least one of the tube end and the instrument tip.

[034] According to a further aspect, provided is a connector for connecting an instrument tip with a laparoscopic tube end, the connector having a base forming a body of the connector, the base having a lumen configured to accommodate an instrument tip actuator therein, and a seal configured to deform upon connection of the connector with the tube end, wherein the base and seal are formed of a single unitary material, and wherein one of the base and seal are subject

to one of chemical, optical and radiological exposure, such that the seal is more flexible than the base.

[035] Another feature of the invention provides an instrument tip configured to be connected to a tube end, the instrument tip having a back hub having a hollow center configured to accommodate an end effector actuator therein, an end effector configured to engage a target, wherein the end effector actuator configured to actuate the end effector, and an elastomeric seal permanently bonded to an inner surface of the back hub and configured to deform upon connection of the connector with the tube end.

[036] According to another aspect, the end effector actuator is a yoke configured to mechanically actuate the end effector, and a proximal end of the yoke is configured to attach to an axially slid able rod located in the tube end.

[037] According to another aspect, the back hub comprises threading on an inside surface thereof, the threading configured to engage complimentary threading on the tube end, the end effector actuator is a yoke configured to mechanically actuate the end effector, and a proximal end of the yoke includes yoke threading configured to threadably attach to complimentary threading on an axially slid able rod located in the tube end.

[038] According to a further aspect, the back hub includes at least one of a recess and protrusion on the inner surface thereof, and the seal is permanently mechanically bonded to the at least one of the recess and protrusion. Additionally, the seal may be chemically bonded to the base by a chemical bonding agent.

[039] Also provided is a method of forming a connector configured to attach to a tube end, the method including molding a connector base having a hollow center and at least one of a recess and protrusion on the inner surface of the connector base, placing the connector base

inside a mold, extruding liquid silicon material into the mold such that the liquid silicon material permanently mechanically bonds to the at least one of a recess and protrusion, to form a seal on a proximal end of the connector base, upon curing of the silicon material.

[040] Further provided is a method of forming a connector configured to attach to a tube end, the method including, molding a connector base having a hollow center, placing the connector base inside a mold, and extruding liquid silicon material and a bonding agent into the mold such that the liquid silicon material permanently chemically bonds to an inner surface of the connector base to form a seal on a proximal end of the connector base, upon curing of the silicon material.

BRIEF DESCRIPTION OF THE DRAWINGS

[041] FIG. 1 shows a perspective view of an end of a reusable handpiece with a conventional seal;

[042] FIG. 2 shows a perspective view of an assembled embodiment of a laparoscopic surgical tip of FIG. 1;

[043] FIG. 3 shows a perspective view of a prior art laparoscopic device in which a piece of flared heart shrink is used on a disposable tip to create a seal to the handpiece;

[044] FIG. 4 shows a side elevational view of an exemplary embodiment of a connector for an instrument tip in accordance with a non-limiting aspect of the disclosure;

[045] FIG. 5 shows a side sectional view of the connector and instrument tip of FIG. 4;

[046] FIG. 6 shows a perspective view of the connector in accordance with a non-limiting aspect of the disclosure;

[047] FIG. 7 shows a side sectional view of the connector in accordance with a non-limiting

aspect of the disclosure connected to a laparoscopic tube end;

[048] FIG. 8 shows a side sectional view of the connector in accordance with a second non-limiting embodiment; and

[049] FIG. 9 shows a side sectional view of the connector in accordance with a third non-limiting embodiment.

DETAILED DESCRIPTION

[050] The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only, and are presented for providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show structural details of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the present invention may be embodied in practice.

[051] FIGS. 4-7 show an exemplary embodiment of a connector of instrument tip in accordance with a non-limiting aspect of the disclosure. A tip 500 is attachable to a reusable handpiece 200 (described in relation to Figs. 1-2) and is used for performing a minimally-invasive laparoscopic procedure such as excision of tissue with cauterization. The tip 500 may typically include (but is not limited to) a tip 500 having an end effector 505 (which may or may not be electrified) such as a grasper, ligation tool, blade, shears, a cauterization tool and the like, in which the tip 500 may engage with the tube end 11 of a tube 61 which extends from a base

portion connected to handles (or other suitable control device, not shown) operable by the medical personnel or physician performing the surgery.

[052] As best shown in Fig. 7, the tip 500 includes a tip actuator in the form of, *e.g.*, a yoke 550 having external threading 155, which engages complementary internal threading 51 on an actuation rod 77 extending along the length of the tube 61 and slidable in direction X relative to the tube (thereby providing for the actuation of the end effector), and the connector 100 includes internal threading 511 which engages the complimentary external threading 21 on the tube end 11 to secure the connector 100 to the tube 61. In this embodiment, the connector 100 serves as a back hub and may also be termed as such herein. Although the figures show the connector 100 connecting the tip to the tube 61 using the above-described a dual-threaded attachment mechanism, those skilled in the art will appreciate that a single-threaded (or no-threaded) attachment mechanism may be employed. In a single-threaded attachment arrangement, while the connector 100 includes internal threading 511 which engages the complimentary external threading 21 on the tube end 11, the yoke 550 and actuation rod 77 can connect by other mechanisms, including but not limited to press-fit, bayonet, ball-and-detent, barrel pin, dog-tooth ratchet mechanism and the like. In a no-threaded attachment mechanism, the connector 100 may not employ a threaded design. As an alternative to internal threading 511 which engages the complimentary external threading 21 on the tube end 11, the connector may employ any form of any suitable engagement technology including but not limited to press-fit, bayonet, ball-and-detent, barrel pin, dog-tooth ratchet mechanism and the like. It is also noted that while the tip actuator is shown as a yoke 550 configured to move in the X direction relative to the tube 61, those skilled in the art will appreciate that the tip actuator need not move (*e.g.*, in the event that the end effector is stationary).

[053] The connector 100 includes seal 105 (discussed below) and according to a non-limiting aspect, is threadedly affixed to the tip 500. For example and as shown in Figure 5, the distal end of the connector 100 may include internal threading 566 to threadedly engage external threading 577 on the proximal end of the tip 500, although those skilled in the art will appreciate that the connector may have the external threading and the tip may have the internal threading. Although the figures show the connector 100 threadedly attached to the tip 500, those skilled in the art will also appreciate that the connector and tip may be connected by other means (including but not limited to press-fit, bayonet, ball-and-detent, barrel pin, dog-tooth ratchet mechanism and the like), and that the connector and cylindrical tip portion may be unitarily formed from a single piece of material.

[054] FIG. 6 shows an exemplary embodiment of the connector 100. The connector 100, as illustrated, shows an elastomeric seal 105 provided in a cylindrically-shaped base 110 (i.e., the portion of the connector other than the seal) made of a material that is more rigid than the material of which the seal is formed. According to a feature of the disclosure, when using mechanical bonding (mechanical interlocking) between the seal 105 and the base 110, the base is formed from polyphenylsulfone (PPSU)(commonly referred to by the trade name Radel®), or may be formed from Polysulphone (PSU)(commonly referred to by the trade name Udel®), although those skilled in the art would appreciate that any suitable mid-range or higher polymer may be used.

[055] According to a feature of the disclosure, the seal 105 is formed from a flexible material such as silicone, although those skilled in the art would appreciate that any suitable flexible material may be used. For a chemically-bonded connection between the seal 105 and the base 110, the exact material of the base 110 and of the seal 105 may be selected based on the

type adhesive in the silicone. It is noted that the base 110 or seal 105 may be constructed of material that deforms, degrades or dissolves when exposed to chemical or heat (e.g., autoclaving) sterilization. In this way, the tip 500 is prevented from being reused.

[056] The seal 105 may be unitarily formed (from a single piece of material) with the base 110 or may be formed separate from the base 110, as explained below. Likewise, base 110 need not be made of a rigid material, but may provide for an acceptable degree of flexibility, so long as the base is more rigid than the seal 105. In this regard, the connector 100 includes at least two materials which together form a single component. This integration allows the selection of materials for the base 110 and seal 105 to have mutually exclusive requirements. In a non-limiting aspect, the connector 100 is formed to be strong, rigid and electrically insulative, while at the same time creating a compliant connection (in the form of the seal 105) that protects against fluid intrusion. It is appreciated that the connector 100 may be formed in any suitable shape, and is not limited to the specific shape disclosed in the drawings.

[057] Although the figures show the length of seal 105 only partially extending inside the base 110 in the X direction, it is appreciated by those skilled in the art that the seal may be of any suitable length in the X direction (including extending the entire length of the base 110). In this regard, while the figures show the internal threading 511 is being formed of the same rigid material as the base, it is appreciated by those skilled in the art that the seal 105 may also include the internal threading.

[058] The seal 105 of the connector 100 either supports (supplements) or replaces, for example, the function of the tube end seal 15 on the reusable handpiece illustrated in FIG. 1. The connector 100 may be rigid and electrically insulative, or may be either entirely or partially formed of an elastomeric material including, but not limited to, for example, natural or artificial

rubber, plastic (such as, for example, polyethylene, polypropylene, PPSU, PSU or any other suitable plastic polymer), and/or resin (and/or any suitable mixture or compound thereof, noting that the elastomeric material is not limited to the exemplary materials thus noted). Further, the seal 105 may be formed from a different material than the base 110, at one or both ends that may be unitarily integrated into the base 110 to form the connector 100. The seal 105 may also be formed such that it is not unitarily formed with the base 110, but rather formed separately and bonded to the base 110.

[059] As shown in Figure 4, in the unattached state, the seal 105 proximally extends past the base 110 in the X direction, and (as shown in Figures 4-5) the outer diameter of the seal further extends radially outwardly beyond the inner diameter of the base. As shown in Figure 7, the connector 100 is threadedly attached to the tube end 11, the seal 105 deforms against the distalmost portion of the tube 61 (flange 40) and if forced radially inwardly toward the outside of the tube end seal 15, such that the seal 105 no longer proximally extends past the base 110 in the X direction or extends radially outwardly beyond the inner diameter of the base, so that the outer diameter of the assembled device is not interrupted by the seal. As such and as shown in Figure 7, when attached, the connector abuts flush directly against the distalmost portion of the tube 61 at the tube end 11. In the event that during attachment of the tip 500 to the tube 61 end and the seal 105 is visible to the user, the user may note that there is an error in attaching the tip 500 to the tube 61, and that the tip should be reattached or a different tip should be used. To this effect, the seal 105 may be of a color contrasting with the colors of the connector 100 and tube 61. It is preferred that the connector 100, tip 500 and tube 61 have the same outer diameter for ease of operation.

[060] The ability of the connector 100 to conform to the handpiece 200 offers additional sealing redundancy at the junction when used in conjunction with other sealing members, such as the tube end seal 15 (although it is noted that the seal 105 may replace the tube end seal). This redundancy allows a handpiece 200 to be used safely, regardless of the tube end seal 15 condition. It is appreciated that the connector 100 may be formed in any desired shape, and is not limited to the specific embodiments disclosed in the drawings.

[061] This attachment of the tip 500 to the tube 61 as shown in Figure 7 seals the interior of the laparoscopic tube end 11 (*i.e.*, the cavity where the yoke 550 and rod 77 operate) from any fluids surrounding the tip 500 or tube end 11, and electrically insulates and fluidically isolates the laparoscopic tube end 11 from the exterior of the tube 61 and tip 500 because the pressure between the distalmost portion of the tube 61 (flange 40) and seal 105 and the adhesiveness and elasticity of the seal 105 form a fluidic seal, and the electrically insulating properties of the elastomeric material of the seal 105 form a high electrical impedance. In addition, the pressure of the seal 105 in the connector 100, when fully engaged against the flange 40, may beneficially prevent rotation and/or disengagement of the connector 100 from the laparoscopic tube end 11, because the frictional resistance resulting from the abutment of the seal 105 of the connector 100 against the flange 40 tends to prevent rotation and unscrewing of the connector 100 from the tube end 11. The composition, shape and/or materials of the seal 105 and/or connector 100 may be selected to optimize the frictional contact with the seal 105, the effectiveness of the fluidic seal, and/or the effectiveness of the electrical impedance thereof, for example.

[062] In accordance with a non-limiting feature, the connector 100 is formed using an insert molding process. In such a process, the formed base 110 is inserted into a mold, whereupon the seal material (*e.g.*, silicone) is extruded into the mold and bonded to the base to create the

connector. The seal 105 may be chemically and/or mechanically bonded to the base 110. In the case of chemical bonding, the seal material, combined with a chemical bonding agent (e.g., an adhesion promoter), is extruded into the mold, whereupon during the curing process, the seal 105 permanently and chemically bonds to the base 110 and cannot be removed from the base without destroying the connector 100.

[063] In the case of mechanical bonding, the portion of inside of the base 110 to interface with the seal 105 includes one or more recesses (e.g., a recessed channel), one or more protrusions or a combination thereof for accepting the seal material therein. The seal material (without a chemical bonding agent) is then extruded into the mold and extrudes into the recess(es) and/or over protrusion(s) and then cures. The action of molding the seal 105 in place creates a mechanically-integrated, permanently-bonded component (connector 100) which has two sets of material properties. The recess/protrusion combination increases the surface area of the inside of the base 110 for contacting the seal 105, and as such, removal of the seal from the base cannot be done without destroying the connector 100. It will also be appreciated that a combination of chemical and mechanical bonding between the seal 105 and base 110 can be performed.

[064] In accordance with another non-limiting feature, the connector 100 is formed using an double molding process. In this process, a primary molding material (base 110) is first poured in a mold. After the primary molding (base 110) is formed, a secondary molding material (seal 105) poured is added to the same mold to form a composite, double-molded connector. It is noted that the above-described chemical and/or mechanical bonding process may be used in the double-molding process.

[065] In accordance with a further non-limiting embodiment, the seal 105 includes a flexible material (such as a flexible ring) that may separately formed from the base 110 (e.g., by molding) and then inserted or placed into the base 110 to form the connector 100. In this embodiment, the connector 100 is formed of the base 110 and seal 105, without the seal having to be bonded or unitarily formed with the base into the connector 100.

[066] FIG. 8 shows another embodiment of a connector 101, in which a seal 106 includes one or more pockets 111 encasing a viscous fluid. Once compressed, pressure from the compression results in the pocket(s) being breached or ruptured, releasing a fluid (including but not limited to a silicone fluid) inside the connector 101. In other words, upon assembly of the connector 101 with the tube 61, the fluid is compressed out of the pocket(s) 111 to flood any clearances left in the connector-tube junction. The released fluid may act as an additional insulation material. Further, since the breached pockets alter the dimensions of the seal, re-use of the tip 500 is further prevented.

[067] In additional embodiments, the seal 105 can be fully or partially visible to the user (and may be of contrasting color to the base 110 and tube 61), thereby providing visual confirmation of the tip's 500 proper installation. The seal 105 may also be designed for a single application to the tube end 11 such that the seal 105 can get partially or fully dissolved, deformed or destroyed upon use (or multiple uses, fixed or otherwise), thereby preventing the tip 500 from being re-used. In other words, the inner material of the seal 105 may be configured such that once the outer surface of the tube end 11 (e.g., threading 21) engages the inner material of the seal (e.g., complementary threading 511) to attach the tip 500 to the tube 61, the inner material is permanently deformed such that upon disengagement of the tube end and the tip, the tube end

and the tip cannot be securely (i.e., successfully enough for the instrument 65 to be used in a medical procedure) reattached. In this way, the tip 500 is prevented from being reused.

[068] FIG. 9 shows a connector 102 according to a further embodiment. Rather than providing a connector 100 including at least two materials bonded to form a single component as described above, a connector 102 is formed of a single unitary type of material, a portion of which is treated to alter the material properties thereof, such that the connector has two different elastomeric properties at respectively two different regions in the X direction. In other words, a portion of the connector 102 is treated chemically (via application of a chemical), optically (via application of light) or radiologically (via application of radiation) to render the portion harder or softer than the remainder (untreated portion) of the connector 102. As an example, if the connector 102 is formed of PTFE (Polytetrafluoroethylene), and a portion 108 is irradiated, this portion 108 will become hard (harder than the non-irradiated portion 103, which can then serve as the seal). It is noted that such treatment of the connector can be performed before or after the tip 500 is attached to the tube 61.

[069] In view of the foregoing, the present disclosure, through one or more of its various aspects, embodiments and/or specific features or sub-components, is thus intended to bring out one or more of the advantages as specifically noted below. While the present disclosure includes description with respect to a medical device and procedure, the present invention may be used in a variety of other, non-medical, environments.

[070] The illustrations of the embodiments described herein are intended to provide a general understanding of the structure of the various embodiments. The illustrations are not intended to serve as a complete description of all of the elements and features of apparatus and systems that utilize the structures or methods described herein. Many other embodiments may be apparent to

those of skill in the art upon reviewing the disclosure. Other embodiments may be utilized and derived from the disclosure, such that structural and logical substitutions and changes may be made without departing from the scope of the disclosure. Additionally, the illustrations are merely representational and may not be drawn to scale. Certain proportions within the illustrations may be exaggerated, while other proportions may be minimized. Accordingly, the disclosure and the figures are to be regarded as illustrative rather than restrictive.

[071] One or more embodiments of the disclosure may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any particular invention or inventive concept. Moreover, although specific embodiments have been illustrated and described herein, it should be appreciated that any subsequent arrangement designed to achieve the same or similar purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all subsequent adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the description.

[072] The Abstract of the Disclosure is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, various features may be grouped together or described in a single embodiment for the purpose of streamlining the disclosure. This disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter may be directed to less than all of the features of any of the disclosed embodiments. Thus, the following claims are incorporated into the Detailed Description, with each claim standing on its own as defining

separately claimed subject matter.

[073] The above disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments which fall within the true spirit and scope of the present disclosure. Thus, to the maximum extent allowed by law, the scope of the present disclosure is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.

What is claimed is:

1. A connector for connecting an instrument tip with a laparoscopic tube end, the connector comprising:
 - a base forming a body of the connector, the base having a lumen configured to accommodate an instrument tip actuator therein; and
 - a seal permanently bonded to an inner surface of a proximal end of the base and configured to deform upon connection of the connector with the tube end.
2. The connector of claim 1, wherein when the connector connects to the tube end, the instrument tip actuator is electrically insulated and fluidically sealed from the outside of the tube end.
3. The connector of claim 1, wherein the connector is unitarily formed with the instrument tip.
4. The connector of claim 1, further comprising an engagement region on at least one of the base and the seal, wherein:
 - the engagement region is one of threaded, press-fit, bayonet, ball-and-detent, barrel pin, dog-tooth ratchet mechanism, and
 - the engagement region is configured to engage a complimentary engagement region on the tube end.

5. The connector of claim 1, wherein when the connector connects to the tube end, the seal is not visible from the exterior of the connector and tube end.

6. The connector of claim 1, wherein the seal is chemically bonded to the base by a chemical bonding agent.

7. The connector of claim 1, wherein the seal comprises at least one fluid-encased pocket, wherein upon deformation of the at least a portion of the seal, the pocket is ruptured and fluid is released.

8. The connector of claim 1, wherein the seal is at least partially visible when the connector is engaged with the tube end.

9. The connector of claim 1, wherein the seal is permanently deformed upon being engaged with the tube end.

10. The connector of claim 1, wherein at least one of the base and seal is one of permanently dissolved, deformed and destroyed after a predetermined number of uses or predetermined amount of time.

11. The connector of claim 1, wherein the base material is more rigid than the seal material.

12. The connector of claim 1, wherein:

the base comprises at least one of a recess and protrusion on the inner surface thereof;

and

the seal is permanently mechanically bonded to the at least one of the recess and protrusion.

13. The connector of claim 1, wherein a distal end of the base is configured to removably attach to a proximal end of the instrument tip.

14. The connector of claim 13, wherein the distal end of the base is configured to removably threadably attach to the proximal end of the instrument tip.

15. The connector of claim 1, wherein:

the seal proximally extends from the base when the connector is unattached to the tube end; and

the base fits flush against the tube end when the connector is attached to the tube end.

16. The connector of claim 1, wherein an outer diameter of the seal is less than an outer diameter of the base.

17. The connector of claim 1, wherein at least one of the base and seal at least one of deforms, degrades and dissolves when exposed to chemical or heat sterilization.

18. The connector of claim 1, wherein:

an outer diameter of the seal extends radially outwardly beyond an inner diameter of the base when the connector is unattached to the tube end; and
the outer diameter of the seal is within the inner diameter of the base when the connector is attached to the tube end.

19. A laparoscopic device, comprising:

a tube having a lumen and a slidable inner shaft;
an instrument tip configured to be affixed to a distal end of the tube; and
a connector affixed to a proximal end of the instrument tip having a back hub and seal permanently bonded to the back hub, the seal configured to deform upon engaging the tube.

20. The laparoscopic device of claim 19, wherein the instrument tip and the connector are unitarily formed together.

21. The laparoscopic device of claim 20, wherein the tube electrically insulates and fluidically seals the inner shaft from the outside of the tube end.

22. The laparoscopic device of claim 19, wherein the back hub is one of threaded, press-fit, bayonet, ball-and-detent, barrel pin, dog-tooth ratchet mechanism.

23. The laparoscopic device of claim 19, wherein the seal includes at least one fluid-encased pocket, wherein upon deformation of the at least a portion of the seal, the pocket is ruptured and fluid is released.

24. The laparoscopic device of claim 19, wherein the seal is at least partially visible when the connector is connected to the tube.

25. The laparoscopic device of claim 19, wherein at least one of the back hub and seal is one of permanently deformed, dissolved and destroyed after a predetermined number of uses or predetermined amount of time.

26. The laparoscopic device of claim 19, wherein the back hub material is more rigid than the seal material.

27. A connector for connecting an instrument tip with a laparoscopic tube end, the connector comprising:

a base forming a body of the connector, the base having a lumen configured to accommodate an instrument tip actuator therein; and

a seal configured to deform upon connection of the connector with the tube end, wherein: the base and seal are formed of a single unitary material, and one of the base and seal are subject to one of chemical, optical and radiological exposure, such that the seal is more flexible than the base.

28. An instrument tip configured to be connected to a tube end, the instrument tip comprising:

a back hub having a hollow center configured to accommodate an end effector actuator therein;

an end effector configured to engage a target, wherein the end effector actuator configured to actuate the end effector; and

an elastomeric seal permanently bonded to an inner surface of the back hub and configured to deform upon connection of the connector with the tube end.

29. The instrument tip of claim 28, wherein:

the end effector actuator is a yoke configured to mechanically actuate the end effector, and

a proximal end of the yoke is configured to attach to an axially slidable rod located in the tube end.

30. The instrument tip of claim 28, wherein:

the back hub comprises threading on an inside surface thereof, the threading configured to engage complimentary threading on the tube end;

the end effector actuator is a yoke configured to mechanically actuate the end effector, and

a proximal end of the yoke comprises yoke threading configured to threadably attach to complimentary threading on an axially slidable rod located in the tube end.

31. The instrument tip of claim 28, wherein:

the back hub comprises at least one of a recess and protrusion on the inner surface thereof; and

the seal is permanently mechanically bonded to the at least one of the recess and protrusion.

32. The connector of claim 28, wherein the seal is chemically bonded to the base by a chemical bonding agent.

33. A method of forming a connector configured to attach to a tube end, the method comprising:

molding a connector base having a hollow center and at least one of a recess and protrusion on the inner surface of the connector base;

placing the connector base inside a mold;

extruding liquid silicon material into the mold such that the liquid silicon material permanently mechanically bonds to the at least one of a recess and protrusion, to form a seal on a proximal end of the connector base, upon curing of the silicon material.

34. A method of forming a connector configured to attach to a tube end, the method comprising:

molding a connector base having a hollow center;

placing the connector base inside a mold; and

extruding liquid silicon material and a bonding agent into the mold such that the liquid silicon material permanently chemically bonds to an inner surface of the connector base to form a seal on a proximal end of the connector base, upon curing of the silicon material.

ABSTRACT OF THE DISCLOSURE

A connector for connecting an instrument tip with a laparoscopic tube end, the connector including a base forming a body of the connector, the base having a lumen configured to accommodate an instrument tip actuator therein, and a seal permanently bonded to an inner surface of a proximal end of the base and configured to deform upon connection of the connector with the tube end.

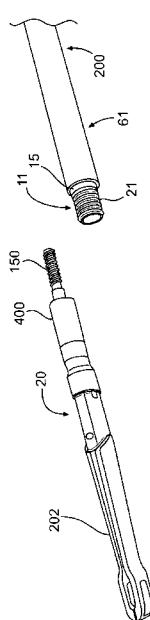


FIG. 1

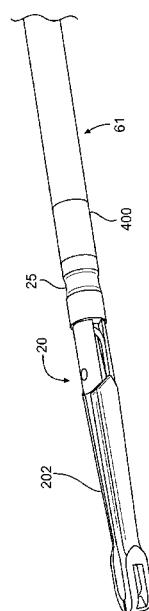


FIG. 2

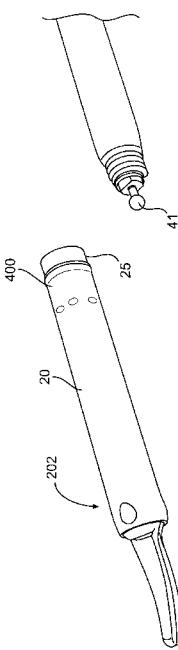


FIG. 3

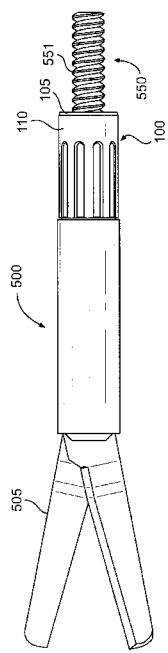


FIG. 4

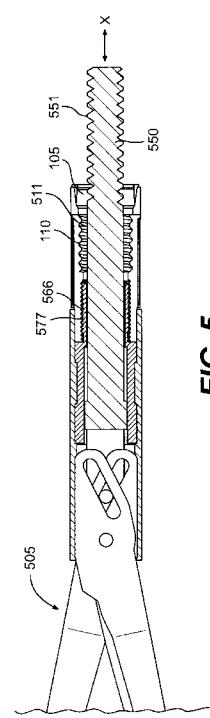


FIG. 5

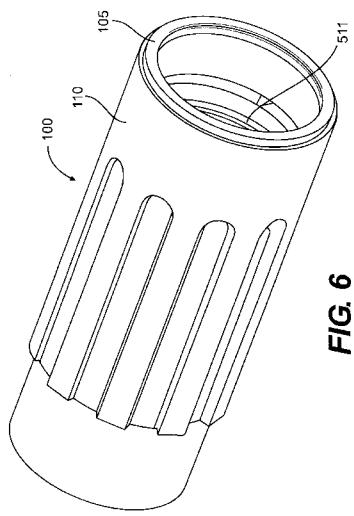


FIG. 6

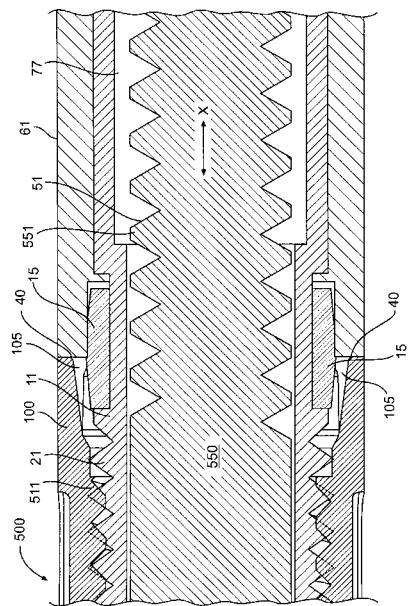


FIG. 7

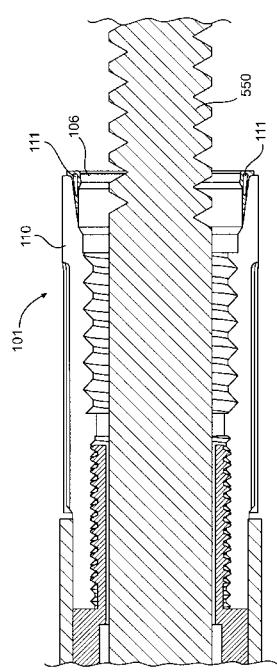


FIG. 8

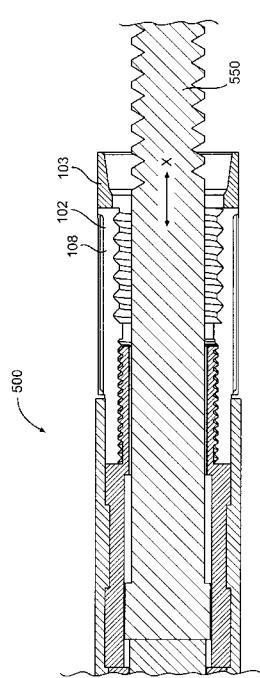
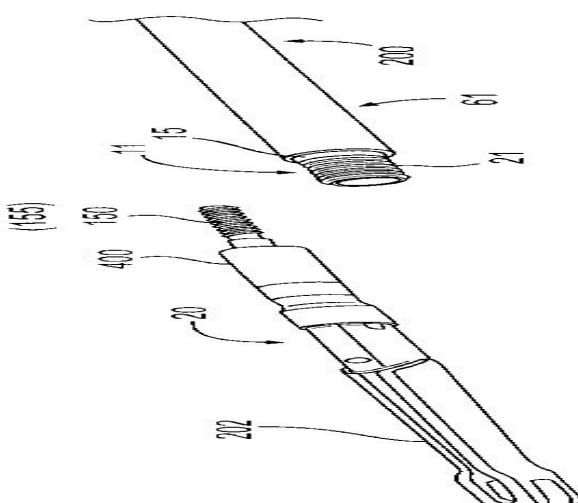



FIG. 9

专利名称(译)	腹腔镜手术系统的连接器		
公开(公告)号	JP2012236025A	公开(公告)日	2012-12-06
申请号	JP2012109003	申请日	2012-05-11
[标]申请(专利权)人(译)	MICROLINE手术		
申请(专利权)人(译)	MICROLINE Surgical公司		
[标]发明人	シャラドジョシ ジャンリュックブルノワ クリスエーデヴリン ピーター・アリスキー ラスラロシュ クリスサリバン		
发明人	シャラド・ジョシ ジャンリュック・ブルノワ クリス・エー・デヴリン ピーター・アリスキー ラス・ラロシュ クリス・サリバン		
IPC分类号	A61B1/00 A61B17/28		
CPC分类号	A61B17/29 A61B2017/2931 A61B2017/294 A61B2017/2948 A61B2090/0814		
FI分类号	A61B1/00.300.B A61B17/28.310 A61B1/00.650 A61B17/128 A61B17/28 A61B17/29 A61B17/32.330 A61B17/3201 A61B17/3211		
F-TERM分类号	4C160/GG28 4C161/AA24 4C161/BB00 4C161/CC00 4C161/DD00 4C161/GG11		
代理人(译)	三浦邦夫 安藤大辅		
优先权	61/485263 2011-05-12 US 13/466425 2012-05-08 US		
其他公开文献	JP5492248B2		
外部链接	Espacenet		

摘要(译)

要解决的问题：为了提供用于腹腔镜手术器械的连接器，该连接器包括至少两种材料并将管端连接到器具的尖端。解决方案：用于将器具的尖端连接到管端的连接器腹腔镜的一个基部形成连接器的主体。底座具有在其中容纳工具尖端致动器的空间。当连接器连接到管端部时可变形的密封件在基座的近端处永久地连接在内表面上。

